This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ercnv | |- ( R Er A -> `' R = R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | errel | |- ( R Er A -> Rel R ) |
|
| 2 | relcnv | |- Rel `' R |
|
| 3 | id | |- ( R Er A -> R Er A ) |
|
| 4 | 3 | ersymb | |- ( R Er A -> ( y R x <-> x R y ) ) |
| 5 | vex | |- x e. _V |
|
| 6 | vex | |- y e. _V |
|
| 7 | 5 6 | brcnv | |- ( x `' R y <-> y R x ) |
| 8 | df-br | |- ( x `' R y <-> <. x , y >. e. `' R ) |
|
| 9 | 7 8 | bitr3i | |- ( y R x <-> <. x , y >. e. `' R ) |
| 10 | df-br | |- ( x R y <-> <. x , y >. e. R ) |
|
| 11 | 4 9 10 | 3bitr3g | |- ( R Er A -> ( <. x , y >. e. `' R <-> <. x , y >. e. R ) ) |
| 12 | 11 | eqrelrdv2 | |- ( ( ( Rel `' R /\ Rel R ) /\ R Er A ) -> `' R = R ) |
| 13 | 2 12 | mpanl1 | |- ( ( Rel R /\ R Er A ) -> `' R = R ) |
| 14 | 1 13 | mpancom | |- ( R Er A -> `' R = R ) |