This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of Suppes p. 83. (Contributed by NM, 15-Jun-2004) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvreldisj |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 | ||
| 2 | simpl | ||
| 3 | elinel1 | ||
| 4 | 3 | adantl | |
| 5 | ecexr | ||
| 6 | 4 5 | syl | |
| 7 | vex | ||
| 8 | elecALTV | ||
| 9 | 6 7 8 | sylancl | |
| 10 | 4 9 | mpbid | |
| 11 | elinel2 | ||
| 12 | 11 | adantl | |
| 13 | ecexr | ||
| 14 | 12 13 | syl | |
| 15 | elecALTV | ||
| 16 | 14 7 15 | sylancl | |
| 17 | 12 16 | mpbid | |
| 18 | 2 10 17 | eqvreltr4d | |
| 19 | 2 18 | eqvrelthi | |
| 20 | 19 | ex | |
| 21 | 20 | exlimdv | |
| 22 | 1 21 | biimtrid | |
| 23 | 22 | orrd | |
| 24 | 23 | orcomd |