This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A wff is equivalent to its conjunctions with truths. (Contributed by Peter Mazsa, 30-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | triantru3.1 | ⊢ 𝜑 | |
| triantru3.2 | ⊢ 𝜓 | ||
| Assertion | triantru3 | ⊢ ( 𝜒 ↔ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | triantru3.1 | ⊢ 𝜑 | |
| 2 | triantru3.2 | ⊢ 𝜓 | |
| 3 | 1 | biantrur | ⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
| 4 | 2 | biantrur | ⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝜒 ) ) |
| 5 | 3anass | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 6 | 3 4 5 | 3bitr4i | ⊢ ( 𝜒 ↔ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |