This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvrelcoss3 | ⊢ ( EqvRel ≀ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcoss | ⊢ Rel ≀ 𝑅 | |
| 2 | 1 | biantru | ⊢ ( ( ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) ↔ ( ( ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) ∧ Rel ≀ 𝑅 ) ) |
| 3 | refrelcosslem | ⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 | |
| 4 | symrelcoss3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) ∧ Rel ≀ 𝑅 ) | |
| 5 | 4 | simpli | ⊢ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) |
| 6 | 3 5 | triantru3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ( ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) ) |
| 7 | dfeqvrel3 | ⊢ ( EqvRel ≀ 𝑅 ↔ ( ( ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) ∧ Rel ≀ 𝑅 ) ) | |
| 8 | 2 6 7 | 3bitr4ri | ⊢ ( EqvRel ≀ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) |