This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the equivalence relation predicate. (Read: R is an equivalence relation.) For sets, being an element of the class of equivalence relations ( df-eqvrels ) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel . Alternate definitions are dfeqvrel2 and dfeqvrel3 . (Contributed by Peter Mazsa, 17-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-eqvrel | ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | 0 | weqvrel | ⊢ EqvRel 𝑅 |
| 2 | 0 | wrefrel | ⊢ RefRel 𝑅 |
| 3 | 0 | wsymrel | ⊢ SymRel 𝑅 |
| 4 | 0 | wtrrel | ⊢ TrRel 𝑅 |
| 5 | 2 3 4 | w3a | ⊢ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) |
| 6 | 1 5 | wb | ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) ) |