This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Solve an equation containing a square. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqsqrtor | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = 𝐵 ↔ ( 𝐴 = ( √ ‘ 𝐵 ) ∨ 𝐴 = - ( √ ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtth | ⊢ ( 𝐵 ∈ ℂ → ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) |
| 3 | 2 | eqeq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( ( √ ‘ 𝐵 ) ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) = 𝐵 ) ) |
| 4 | sqrtcl | ⊢ ( 𝐵 ∈ ℂ → ( √ ‘ 𝐵 ) ∈ ℂ ) | |
| 5 | sqeqor | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( √ ‘ 𝐵 ) ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( ( √ ‘ 𝐵 ) ↑ 2 ) ↔ ( 𝐴 = ( √ ‘ 𝐵 ) ∨ 𝐴 = - ( √ ‘ 𝐵 ) ) ) ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( ( √ ‘ 𝐵 ) ↑ 2 ) ↔ ( 𝐴 = ( √ ‘ 𝐵 ) ∨ 𝐴 = - ( √ ‘ 𝐵 ) ) ) ) |
| 7 | 3 6 | bitr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = 𝐵 ↔ ( 𝐴 = ( √ ‘ 𝐵 ) ∨ 𝐴 = - ( √ ‘ 𝐵 ) ) ) ) |