This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Solve an equation containing a square. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqsqrtor | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = B <-> ( A = ( sqrt ` B ) \/ A = -u ( sqrt ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtth | |- ( B e. CC -> ( ( sqrt ` B ) ^ 2 ) = B ) |
|
| 2 | 1 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( ( sqrt ` B ) ^ 2 ) = B ) |
| 3 | 2 | eqeq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = ( ( sqrt ` B ) ^ 2 ) <-> ( A ^ 2 ) = B ) ) |
| 4 | sqrtcl | |- ( B e. CC -> ( sqrt ` B ) e. CC ) |
|
| 5 | sqeqor | |- ( ( A e. CC /\ ( sqrt ` B ) e. CC ) -> ( ( A ^ 2 ) = ( ( sqrt ` B ) ^ 2 ) <-> ( A = ( sqrt ` B ) \/ A = -u ( sqrt ` B ) ) ) ) |
|
| 6 | 4 5 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = ( ( sqrt ` B ) ^ 2 ) <-> ( A = ( sqrt ` B ) \/ A = -u ( sqrt ` B ) ) ) ) |
| 7 | 3 6 | bitr3d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = B <-> ( A = ( sqrt ` B ) \/ A = -u ( sqrt ` B ) ) ) ) |