This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce equality with a restricted abstraction. (Contributed by Thierry Arnoux, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqrrabd.1 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| eqrrabd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↔ 𝜓 ) ) | ||
| Assertion | eqrrabd | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrrabd.1 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 2 | eqrrabd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↔ 𝜓 ) ) | |
| 3 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 5 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝜓 } | |
| 6 | 1 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) ) |
| 7 | 6 | pm4.71rd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 8 | 2 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 9 | 7 8 | bitrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 10 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 11 | 9 10 | bitr4di | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ) |
| 12 | 3 4 5 11 | eqrd | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |