This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce equality with a restricted abstraction. (Contributed by Thierry Arnoux, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqrrabd.1 | |- ( ph -> B C_ A ) |
|
| eqrrabd.2 | |- ( ( ph /\ x e. A ) -> ( x e. B <-> ps ) ) |
||
| Assertion | eqrrabd | |- ( ph -> B = { x e. A | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrrabd.1 | |- ( ph -> B C_ A ) |
|
| 2 | eqrrabd.2 | |- ( ( ph /\ x e. A ) -> ( x e. B <-> ps ) ) |
|
| 3 | nfv | |- F/ x ph |
|
| 4 | nfcv | |- F/_ x B |
|
| 5 | nfrab1 | |- F/_ x { x e. A | ps } |
|
| 6 | 1 | sseld | |- ( ph -> ( x e. B -> x e. A ) ) |
| 7 | 6 | pm4.71rd | |- ( ph -> ( x e. B <-> ( x e. A /\ x e. B ) ) ) |
| 8 | 2 | pm5.32da | |- ( ph -> ( ( x e. A /\ x e. B ) <-> ( x e. A /\ ps ) ) ) |
| 9 | 7 8 | bitrd | |- ( ph -> ( x e. B <-> ( x e. A /\ ps ) ) ) |
| 10 | rabid | |- ( x e. { x e. A | ps } <-> ( x e. A /\ ps ) ) |
|
| 11 | 9 10 | bitr4di | |- ( ph -> ( x e. B <-> x e. { x e. A | ps } ) ) |
| 12 | 3 4 5 11 | eqrd | |- ( ph -> B = { x e. A | ps } ) |