This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqreznegel | |- ( A C_ ZZ -> { z e. RR | -u z e. A } = { z e. ZZ | -u z e. A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ ZZ -> ( -u w e. A -> -u w e. ZZ ) ) |
|
| 2 | recn | |- ( w e. RR -> w e. CC ) |
|
| 3 | negid | |- ( w e. CC -> ( w + -u w ) = 0 ) |
|
| 4 | 0z | |- 0 e. ZZ |
|
| 5 | 3 4 | eqeltrdi | |- ( w e. CC -> ( w + -u w ) e. ZZ ) |
| 6 | 5 | pm4.71i | |- ( w e. CC <-> ( w e. CC /\ ( w + -u w ) e. ZZ ) ) |
| 7 | zrevaddcl | |- ( -u w e. ZZ -> ( ( w e. CC /\ ( w + -u w ) e. ZZ ) <-> w e. ZZ ) ) |
|
| 8 | 6 7 | bitrid | |- ( -u w e. ZZ -> ( w e. CC <-> w e. ZZ ) ) |
| 9 | 2 8 | imbitrid | |- ( -u w e. ZZ -> ( w e. RR -> w e. ZZ ) ) |
| 10 | 1 9 | syl6 | |- ( A C_ ZZ -> ( -u w e. A -> ( w e. RR -> w e. ZZ ) ) ) |
| 11 | 10 | impcomd | |- ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) -> w e. ZZ ) ) |
| 12 | simpr | |- ( ( w e. RR /\ -u w e. A ) -> -u w e. A ) |
|
| 13 | 11 12 | jca2 | |- ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) -> ( w e. ZZ /\ -u w e. A ) ) ) |
| 14 | zre | |- ( w e. ZZ -> w e. RR ) |
|
| 15 | 14 | anim1i | |- ( ( w e. ZZ /\ -u w e. A ) -> ( w e. RR /\ -u w e. A ) ) |
| 16 | 13 15 | impbid1 | |- ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) <-> ( w e. ZZ /\ -u w e. A ) ) ) |
| 17 | negeq | |- ( z = w -> -u z = -u w ) |
|
| 18 | 17 | eleq1d | |- ( z = w -> ( -u z e. A <-> -u w e. A ) ) |
| 19 | 18 | elrab | |- ( w e. { z e. RR | -u z e. A } <-> ( w e. RR /\ -u w e. A ) ) |
| 20 | 18 | elrab | |- ( w e. { z e. ZZ | -u z e. A } <-> ( w e. ZZ /\ -u w e. A ) ) |
| 21 | 16 19 20 | 3bitr4g | |- ( A C_ ZZ -> ( w e. { z e. RR | -u z e. A } <-> w e. { z e. ZZ | -u z e. A } ) ) |
| 22 | 21 | eqrdv | |- ( A C_ ZZ -> { z e. RR | -u z e. A } = { z e. ZZ | -u z e. A } ) |