This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proof induction for en2 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016) Generalize to all ordinals and avoid ax-pow , ax-un . (Revised by BTernaryTau, 6-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | enp1i.1 | ||
| enp1i.2 | |||
| enp1i.3 | |||
| enp1i.4 | |||
| Assertion | enp1i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enp1i.1 | ||
| 2 | enp1i.2 | ||
| 3 | enp1i.3 | ||
| 4 | enp1i.4 | ||
| 5 | 2 | breq2i | |
| 6 | encv | ||
| 7 | 6 | simprd | |
| 8 | sssucid | ||
| 9 | ssexg | ||
| 10 | 8 9 | mpan | |
| 11 | elong | ||
| 12 | 7 10 11 | 3syl | |
| 13 | 1 12 | mpbiri | |
| 14 | rexdif1en | ||
| 15 | 13 14 | mpancom | |
| 16 | 3 | reximi | |
| 17 | df-rex | ||
| 18 | 4 | imp | |
| 19 | 18 | eximi | |
| 20 | 17 19 | sylbi | |
| 21 | 15 16 20 | 3syl | |
| 22 | 5 21 | sylbi |