This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en4 | ⊢ ( 𝐴 ≈ 4o → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝐴 = ( { 𝑥 , 𝑦 } ∪ { 𝑧 , 𝑤 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord3 | ⊢ Ord 3o | |
| 2 | df-4o | ⊢ 4o = suc 3o | |
| 3 | en3 | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ≈ 3o → ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝐴 ∖ { 𝑥 } ) = { 𝑦 , 𝑧 , 𝑤 } ) | |
| 4 | qdassr | ⊢ ( { 𝑥 , 𝑦 } ∪ { 𝑧 , 𝑤 } ) = ( { 𝑥 } ∪ { 𝑦 , 𝑧 , 𝑤 } ) | |
| 5 | 4 | enp1ilem | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑥 } ) = { 𝑦 , 𝑧 , 𝑤 } → 𝐴 = ( { 𝑥 , 𝑦 } ∪ { 𝑧 , 𝑤 } ) ) ) |
| 6 | 5 | eximdv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑤 ( 𝐴 ∖ { 𝑥 } ) = { 𝑦 , 𝑧 , 𝑤 } → ∃ 𝑤 𝐴 = ( { 𝑥 , 𝑦 } ∪ { 𝑧 , 𝑤 } ) ) ) |
| 7 | 6 | 2eximdv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝐴 ∖ { 𝑥 } ) = { 𝑦 , 𝑧 , 𝑤 } → ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝐴 = ( { 𝑥 , 𝑦 } ∪ { 𝑧 , 𝑤 } ) ) ) |
| 8 | 1 2 3 7 | enp1i | ⊢ ( 𝐴 ≈ 4o → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝐴 = ( { 𝑥 , 𝑦 } ∪ { 𝑧 , 𝑤 } ) ) |