This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for en3lp . (Contributed by Alan Sare, 28-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en3lplem1 | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x = A -> ( x i^i { A , B , C } ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( A e. B /\ B e. C /\ C e. A ) -> C e. A ) |
|
| 2 | eleq2 | |- ( x = A -> ( C e. x <-> C e. A ) ) |
|
| 3 | 1 2 | syl5ibrcom | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x = A -> C e. x ) ) |
| 4 | tpid3g | |- ( C e. A -> C e. { A , B , C } ) |
|
| 5 | 4 | 3ad2ant3 | |- ( ( A e. B /\ B e. C /\ C e. A ) -> C e. { A , B , C } ) |
| 6 | inelcm | |- ( ( C e. x /\ C e. { A , B , C } ) -> ( x i^i { A , B , C } ) =/= (/) ) |
|
| 7 | 5 6 | sylan2 | |- ( ( C e. x /\ ( A e. B /\ B e. C /\ C e. A ) ) -> ( x i^i { A , B , C } ) =/= (/) ) |
| 8 | 7 | expcom | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( C e. x -> ( x i^i { A , B , C } ) =/= (/) ) ) |
| 9 | 3 8 | syld | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x = A -> ( x i^i { A , B , C } ) =/= (/) ) ) |