This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
The symmetric difference of two classes
elsymdifxor
Metamath Proof Explorer
Description: Membership in a symmetric difference is an exclusive-or relationship.
(Contributed by David A. Wheeler , 26-Apr-2020) (Proof shortened by BJ , 13-Aug-2022)
Ref
Expression
Assertion
elsymdifxor
⊢ A ∈ B ∆ C ↔ A ∈ B ⊻ A ∈ C
Proof
Step
Hyp
Ref
Expression
1
elsymdif
⊢ A ∈ B ∆ C ↔ ¬ A ∈ B ↔ A ∈ C
2
df-xor
⊢ A ∈ B ⊻ A ∈ C ↔ ¬ A ∈ B ↔ A ∈ C
3
1 2
bitr4i
⊢ A ∈ B ∆ C ↔ A ∈ B ⊻ A ∈ C