This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymdif2 | ⊢ ( 𝐴 △ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsymdifxor | ⊢ ( 𝑥 ∈ ( 𝐴 △ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵 ) ) | |
| 2 | 1 | eqabi | ⊢ ( 𝐴 △ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵 ) } |