This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a principal ideal. Analogous to ellspsn . (Contributed by Thierry Arnoux, 15-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elrspsn.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| elrspsn.2 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| elrspsn.3 | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | ||
| Assertion | elrspsn | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑥 ∈ 𝐵 𝐼 = ( 𝑥 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrspsn.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | elrspsn.2 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | elrspsn.3 | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| 4 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 5 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | 5 1 | eleqtrdi | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 7 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 8 | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 9 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 10 | rlmvsca | ⊢ ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 11 | 2 10 | eqtri | ⊢ · = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) ) |
| 12 | rspval | ⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 13 | 3 12 | eqtri | ⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 14 | 7 8 9 11 13 | ellspsn | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) 𝐼 = ( 𝑥 · 𝑋 ) ) ) |
| 15 | 4 6 14 | syl2an2r | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) 𝐼 = ( 𝑥 · 𝑋 ) ) ) |
| 16 | rlmsca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) ) |
| 19 | 1 18 | eqtr2id | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) = 𝐵 ) |
| 20 | 19 | rexeqdv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) 𝐼 = ( 𝑥 · 𝑋 ) ↔ ∃ 𝑥 ∈ 𝐵 𝐼 = ( 𝑥 · 𝑋 ) ) ) |
| 21 | 15 20 | bitrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑥 ∈ 𝐵 𝐼 = ( 𝑥 · 𝑋 ) ) ) |