This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a principal ideal. Analogous to ellspsn . (Contributed by Thierry Arnoux, 15-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elrspsn.1 | |- B = ( Base ` R ) |
|
| elrspsn.2 | |- .x. = ( .r ` R ) |
||
| elrspsn.3 | |- K = ( RSpan ` R ) |
||
| Assertion | elrspsn | |- ( ( R e. Ring /\ X e. B ) -> ( I e. ( K ` { X } ) <-> E. x e. B I = ( x .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrspsn.1 | |- B = ( Base ` R ) |
|
| 2 | elrspsn.2 | |- .x. = ( .r ` R ) |
|
| 3 | elrspsn.3 | |- K = ( RSpan ` R ) |
|
| 4 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 5 | simpr | |- ( ( R e. Ring /\ X e. B ) -> X e. B ) |
|
| 6 | 5 1 | eleqtrdi | |- ( ( R e. Ring /\ X e. B ) -> X e. ( Base ` R ) ) |
| 7 | eqid | |- ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) |
|
| 8 | eqid | |- ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) = ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) |
|
| 9 | rlmbas | |- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
|
| 10 | rlmvsca | |- ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) |
|
| 11 | 2 10 | eqtri | |- .x. = ( .s ` ( ringLMod ` R ) ) |
| 12 | rspval | |- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) |
|
| 13 | 3 12 | eqtri | |- K = ( LSpan ` ( ringLMod ` R ) ) |
| 14 | 7 8 9 11 13 | ellspsn | |- ( ( ( ringLMod ` R ) e. LMod /\ X e. ( Base ` R ) ) -> ( I e. ( K ` { X } ) <-> E. x e. ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) I = ( x .x. X ) ) ) |
| 15 | 4 6 14 | syl2an2r | |- ( ( R e. Ring /\ X e. B ) -> ( I e. ( K ` { X } ) <-> E. x e. ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) I = ( x .x. X ) ) ) |
| 16 | rlmsca | |- ( R e. Ring -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
|
| 17 | 16 | adantr | |- ( ( R e. Ring /\ X e. B ) -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
| 18 | 17 | fveq2d | |- ( ( R e. Ring /\ X e. B ) -> ( Base ` R ) = ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) ) |
| 19 | 1 18 | eqtr2id | |- ( ( R e. Ring /\ X e. B ) -> ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) = B ) |
| 20 | 19 | rexeqdv | |- ( ( R e. Ring /\ X e. B ) -> ( E. x e. ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) I = ( x .x. X ) <-> E. x e. B I = ( x .x. X ) ) ) |
| 21 | 15 20 | bitrd | |- ( ( R e. Ring /\ X e. B ) -> ( I e. ( K ` { X } ) <-> E. x e. B I = ( x .x. X ) ) ) |