This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrelscnveq3 | ⊢ ( 𝑅 ∈ Rels → ( 𝑅 = ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss | ⊢ ( 𝑅 = ◡ 𝑅 ↔ ( 𝑅 ⊆ ◡ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ) | |
| 2 | cnvsym | ⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) | |
| 3 | 2 | biimpi | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
| 4 | 3 | a1d | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ( 𝑅 ∈ Rels → ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑅 ⊆ ◡ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) → ( 𝑅 ∈ Rels → ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 6 | 5 | com12 | ⊢ ( 𝑅 ∈ Rels → ( ( 𝑅 ⊆ ◡ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) → ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 7 | elrelsrelim | ⊢ ( 𝑅 ∈ Rels → Rel 𝑅 ) | |
| 8 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝑅 ∈ Rels → ◡ ◡ 𝑅 = 𝑅 ) |
| 10 | cnvss | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ◡ ◡ 𝑅 ⊆ ◡ 𝑅 ) | |
| 11 | sseq1 | ⊢ ( ◡ ◡ 𝑅 = 𝑅 → ( ◡ ◡ 𝑅 ⊆ ◡ 𝑅 ↔ 𝑅 ⊆ ◡ 𝑅 ) ) | |
| 12 | 10 11 | syl5ibcom | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ( ◡ ◡ 𝑅 = 𝑅 → 𝑅 ⊆ ◡ 𝑅 ) ) |
| 13 | 2 12 | sylbir | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → ( ◡ ◡ 𝑅 = 𝑅 → 𝑅 ⊆ ◡ 𝑅 ) ) |
| 14 | 9 13 | syl5com | ⊢ ( 𝑅 ∈ Rels → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → 𝑅 ⊆ ◡ 𝑅 ) ) |
| 15 | 2 | biimpri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → ◡ 𝑅 ⊆ 𝑅 ) |
| 16 | 14 15 | jca2 | ⊢ ( 𝑅 ∈ Rels → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → ( 𝑅 ⊆ ◡ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ) ) |
| 17 | 6 16 | impbid | ⊢ ( 𝑅 ∈ Rels → ( ( 𝑅 ⊆ ◡ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 18 | 1 17 | bitrid | ⊢ ( 𝑅 ∈ Rels → ( 𝑅 = ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |