This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrelscnveq3 | |- ( R e. Rels -> ( R = `' R <-> A. x A. y ( x R y -> y R x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss | |- ( R = `' R <-> ( R C_ `' R /\ `' R C_ R ) ) |
|
| 2 | cnvsym | |- ( `' R C_ R <-> A. x A. y ( x R y -> y R x ) ) |
|
| 3 | 2 | biimpi | |- ( `' R C_ R -> A. x A. y ( x R y -> y R x ) ) |
| 4 | 3 | a1d | |- ( `' R C_ R -> ( R e. Rels -> A. x A. y ( x R y -> y R x ) ) ) |
| 5 | 4 | adantl | |- ( ( R C_ `' R /\ `' R C_ R ) -> ( R e. Rels -> A. x A. y ( x R y -> y R x ) ) ) |
| 6 | 5 | com12 | |- ( R e. Rels -> ( ( R C_ `' R /\ `' R C_ R ) -> A. x A. y ( x R y -> y R x ) ) ) |
| 7 | elrelsrelim | |- ( R e. Rels -> Rel R ) |
|
| 8 | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
|
| 9 | 7 8 | sylib | |- ( R e. Rels -> `' `' R = R ) |
| 10 | cnvss | |- ( `' R C_ R -> `' `' R C_ `' R ) |
|
| 11 | sseq1 | |- ( `' `' R = R -> ( `' `' R C_ `' R <-> R C_ `' R ) ) |
|
| 12 | 10 11 | syl5ibcom | |- ( `' R C_ R -> ( `' `' R = R -> R C_ `' R ) ) |
| 13 | 2 12 | sylbir | |- ( A. x A. y ( x R y -> y R x ) -> ( `' `' R = R -> R C_ `' R ) ) |
| 14 | 9 13 | syl5com | |- ( R e. Rels -> ( A. x A. y ( x R y -> y R x ) -> R C_ `' R ) ) |
| 15 | 2 | biimpri | |- ( A. x A. y ( x R y -> y R x ) -> `' R C_ R ) |
| 16 | 14 15 | jca2 | |- ( R e. Rels -> ( A. x A. y ( x R y -> y R x ) -> ( R C_ `' R /\ `' R C_ R ) ) ) |
| 17 | 6 16 | impbid | |- ( R e. Rels -> ( ( R C_ `' R /\ `' R C_ R ) <-> A. x A. y ( x R y -> y R x ) ) ) |
| 18 | 1 17 | bitrid | |- ( R e. Rels -> ( R = `' R <-> A. x A. y ( x R y -> y R x ) ) ) |