This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem elrelsrelim

Description: The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019)

Ref Expression
Assertion elrelsrelim ( 𝑅 ∈ Rels → Rel 𝑅 )

Proof

Step Hyp Ref Expression
1 elrelsrel ( 𝑅 ∈ Rels → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) )
2 1 ibi ( 𝑅 ∈ Rels → Rel 𝑅 )