This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrelscnveq2 | ⊢ ( 𝑅 ∈ Rels → ( ◡ 𝑅 = 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsym | ⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) | |
| 2 | 1 | a1i | ⊢ ( 𝑅 ∈ Rels → ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 3 | elrelsrelim | ⊢ ( 𝑅 ∈ Rels → Rel 𝑅 ) | |
| 4 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝑅 ∈ Rels → ◡ ◡ 𝑅 = 𝑅 ) |
| 6 | 5 | sseq1d | ⊢ ( 𝑅 ∈ Rels → ( ◡ ◡ 𝑅 ⊆ ◡ 𝑅 ↔ 𝑅 ⊆ ◡ 𝑅 ) ) |
| 7 | cnvsym | ⊢ ( ◡ ◡ 𝑅 ⊆ ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ) | |
| 8 | 6 7 | bitr3di | ⊢ ( 𝑅 ∈ Rels → ( 𝑅 ⊆ ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ) ) |
| 9 | relbrcnvg | ⊢ ( Rel 𝑅 → ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) | |
| 10 | 3 9 | syl | ⊢ ( 𝑅 ∈ Rels → ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) |
| 11 | relbrcnvg | ⊢ ( Rel 𝑅 → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) | |
| 12 | 3 11 | syl | ⊢ ( 𝑅 ∈ Rels → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
| 13 | 10 12 | imbi12d | ⊢ ( 𝑅 ∈ Rels → ( ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ↔ ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) |
| 14 | 13 | 2albidv | ⊢ ( 𝑅 ∈ Rels → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ◡ 𝑅 𝑦 → 𝑦 ◡ 𝑅 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) |
| 15 | 8 14 | bitrd | ⊢ ( 𝑅 ∈ Rels → ( 𝑅 ⊆ ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) |
| 16 | 2 15 | anbi12d | ⊢ ( 𝑅 ∈ Rels → ( ( ◡ 𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡ 𝑅 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) ) |
| 17 | eqss | ⊢ ( ◡ 𝑅 = 𝑅 ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡ 𝑅 ) ) | |
| 18 | 2albiim | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 𝑅 𝑥 → 𝑥 𝑅 𝑦 ) ) ) | |
| 19 | 16 17 18 | 3bitr4g | ⊢ ( 𝑅 ∈ Rels → ( ◡ 𝑅 = 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |