This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnnnn0 | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℂ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 2 | npcan1 | ⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑁 ∈ ℂ → ( ( ( 𝑁 − 1 ) + 1 ) ∈ ℕ ↔ 𝑁 ∈ ℕ ) ) |
| 4 | peano2cnm | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 − 1 ) ∈ ℂ ) | |
| 5 | 4 | biantrurd | ⊢ ( 𝑁 ∈ ℂ → ( ( ( 𝑁 − 1 ) + 1 ) ∈ ℕ ↔ ( ( 𝑁 − 1 ) ∈ ℂ ∧ ( ( 𝑁 − 1 ) + 1 ) ∈ ℕ ) ) ) |
| 6 | 3 5 | bitr3d | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 ∈ ℕ ↔ ( ( 𝑁 − 1 ) ∈ ℂ ∧ ( ( 𝑁 − 1 ) + 1 ) ∈ ℕ ) ) ) |
| 7 | elnn0nn | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 ↔ ( ( 𝑁 − 1 ) ∈ ℂ ∧ ( ( 𝑁 − 1 ) + 1 ) ∈ ℕ ) ) | |
| 8 | 6 7 | bitr4di | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 ∈ ℕ ↔ ( 𝑁 − 1 ) ∈ ℕ0 ) ) |
| 9 | 1 8 | biadanii | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℂ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) ) |