This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The wff ( A e. B -/\ B e. A ) encoded as ( ( A e.g B ) |g ( B e.g A ) ) is true in any model M . This is the model theoretic proof of elnanel . (Contributed by AV, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnanelprv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝑀 ⊧ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝑀 ∈ 𝑉 ) | |
| 2 | 3simpc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) | |
| 3 | pm3.22 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ) | |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ) |
| 5 | eqid | ⊢ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) = ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) | |
| 6 | 5 | satefvfmla1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ) → ( 𝑀 Sat∈ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐴 ) ∈ ( 𝑎 ‘ 𝐵 ) ∨ ¬ ( 𝑎 ‘ 𝐵 ) ∈ ( 𝑎 ‘ 𝐴 ) ) } ) |
| 7 | 1 2 4 6 | syl3anc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝑀 Sat∈ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐴 ) ∈ ( 𝑎 ‘ 𝐵 ) ∨ ¬ ( 𝑎 ‘ 𝐵 ) ∈ ( 𝑎 ‘ 𝐴 ) ) } ) |
| 8 | elnanel | ⊢ ( ( 𝑎 ‘ 𝐴 ) ∈ ( 𝑎 ‘ 𝐵 ) ⊼ ( 𝑎 ‘ 𝐵 ) ∈ ( 𝑎 ‘ 𝐴 ) ) | |
| 9 | nanor | ⊢ ( ( ( 𝑎 ‘ 𝐴 ) ∈ ( 𝑎 ‘ 𝐵 ) ⊼ ( 𝑎 ‘ 𝐵 ) ∈ ( 𝑎 ‘ 𝐴 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝐴 ) ∈ ( 𝑎 ‘ 𝐵 ) ∨ ¬ ( 𝑎 ‘ 𝐵 ) ∈ ( 𝑎 ‘ 𝐴 ) ) ) | |
| 10 | 8 9 | mpbi | ⊢ ( ¬ ( 𝑎 ‘ 𝐴 ) ∈ ( 𝑎 ‘ 𝐵 ) ∨ ¬ ( 𝑎 ‘ 𝐵 ) ∈ ( 𝑎 ‘ 𝐴 ) ) |
| 11 | 10 | a1i | ⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ¬ ( 𝑎 ‘ 𝐴 ) ∈ ( 𝑎 ‘ 𝐵 ) ∨ ¬ ( 𝑎 ‘ 𝐵 ) ∈ ( 𝑎 ‘ 𝐴 ) ) ) |
| 12 | 11 | rabeqc | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐴 ) ∈ ( 𝑎 ‘ 𝐵 ) ∨ ¬ ( 𝑎 ‘ 𝐵 ) ∈ ( 𝑎 ‘ 𝐴 ) ) } = ( 𝑀 ↑m ω ) |
| 13 | 7 12 | eqtrdi | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝑀 Sat∈ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ) = ( 𝑀 ↑m ω ) ) |
| 14 | ovex | ⊢ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ∈ V | |
| 15 | prv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ∈ V ) → ( 𝑀 ⊧ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ↔ ( 𝑀 Sat∈ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ) = ( 𝑀 ↑m ω ) ) ) | |
| 16 | 1 14 15 | sylancl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝑀 ⊧ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ↔ ( 𝑀 Sat∈ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ) = ( 𝑀 ↑m ω ) ) ) |
| 17 | 13 16 | mpbird | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝑀 ⊧ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ) |