This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The wff ( A e. B -/\ B e. A ) encoded as ( ( A e.g B ) |g ( B e.g A ) ) is true in any model M . This is the model theoretic proof of elnanel . (Contributed by AV, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnanelprv | |- ( ( M e. V /\ A e. _om /\ B e. _om ) -> M |= ( ( A e.g B ) |g ( B e.g A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( M e. V /\ A e. _om /\ B e. _om ) -> M e. V ) |
|
| 2 | 3simpc | |- ( ( M e. V /\ A e. _om /\ B e. _om ) -> ( A e. _om /\ B e. _om ) ) |
|
| 3 | pm3.22 | |- ( ( A e. _om /\ B e. _om ) -> ( B e. _om /\ A e. _om ) ) |
|
| 4 | 3 | 3adant1 | |- ( ( M e. V /\ A e. _om /\ B e. _om ) -> ( B e. _om /\ A e. _om ) ) |
| 5 | eqid | |- ( ( A e.g B ) |g ( B e.g A ) ) = ( ( A e.g B ) |g ( B e.g A ) ) |
|
| 6 | 5 | satefvfmla1 | |- ( ( M e. V /\ ( A e. _om /\ B e. _om ) /\ ( B e. _om /\ A e. _om ) ) -> ( M SatE ( ( A e.g B ) |g ( B e.g A ) ) ) = { a e. ( M ^m _om ) | ( -. ( a ` A ) e. ( a ` B ) \/ -. ( a ` B ) e. ( a ` A ) ) } ) |
| 7 | 1 2 4 6 | syl3anc | |- ( ( M e. V /\ A e. _om /\ B e. _om ) -> ( M SatE ( ( A e.g B ) |g ( B e.g A ) ) ) = { a e. ( M ^m _om ) | ( -. ( a ` A ) e. ( a ` B ) \/ -. ( a ` B ) e. ( a ` A ) ) } ) |
| 8 | elnanel | |- ( ( a ` A ) e. ( a ` B ) -/\ ( a ` B ) e. ( a ` A ) ) |
|
| 9 | nanor | |- ( ( ( a ` A ) e. ( a ` B ) -/\ ( a ` B ) e. ( a ` A ) ) <-> ( -. ( a ` A ) e. ( a ` B ) \/ -. ( a ` B ) e. ( a ` A ) ) ) |
|
| 10 | 8 9 | mpbi | |- ( -. ( a ` A ) e. ( a ` B ) \/ -. ( a ` B ) e. ( a ` A ) ) |
| 11 | 10 | a1i | |- ( a e. ( M ^m _om ) -> ( -. ( a ` A ) e. ( a ` B ) \/ -. ( a ` B ) e. ( a ` A ) ) ) |
| 12 | 11 | rabeqc | |- { a e. ( M ^m _om ) | ( -. ( a ` A ) e. ( a ` B ) \/ -. ( a ` B ) e. ( a ` A ) ) } = ( M ^m _om ) |
| 13 | 7 12 | eqtrdi | |- ( ( M e. V /\ A e. _om /\ B e. _om ) -> ( M SatE ( ( A e.g B ) |g ( B e.g A ) ) ) = ( M ^m _om ) ) |
| 14 | ovex | |- ( ( A e.g B ) |g ( B e.g A ) ) e. _V |
|
| 15 | prv | |- ( ( M e. V /\ ( ( A e.g B ) |g ( B e.g A ) ) e. _V ) -> ( M |= ( ( A e.g B ) |g ( B e.g A ) ) <-> ( M SatE ( ( A e.g B ) |g ( B e.g A ) ) ) = ( M ^m _om ) ) ) |
|
| 16 | 1 14 15 | sylancl | |- ( ( M e. V /\ A e. _om /\ B e. _om ) -> ( M |= ( ( A e.g B ) |g ( B e.g A ) ) <-> ( M SatE ( ( A e.g B ) |g ( B e.g A ) ) ) = ( M ^m _om ) ) ) |
| 17 | 13 16 | mpbird | |- ( ( M e. V /\ A e. _om /\ B e. _om ) -> M |= ( ( A e.g B ) |g ( B e.g A ) ) ) |