This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015) (Revised by AV, 26-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elmptrab2.f | |- F = ( x e. _V |-> { y e. B | ph } ) |
|
| elmptrab2.s1 | |- ( ( x = X /\ y = Y ) -> ( ph <-> ps ) ) |
||
| elmptrab2.s2 | |- ( x = X -> B = C ) |
||
| elmptrab2.ex | |- B e. _V |
||
| elmptrab2.rc | |- ( Y e. C -> X e. W ) |
||
| Assertion | elmptrab2 | |- ( Y e. ( F ` X ) <-> ( Y e. C /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmptrab2.f | |- F = ( x e. _V |-> { y e. B | ph } ) |
|
| 2 | elmptrab2.s1 | |- ( ( x = X /\ y = Y ) -> ( ph <-> ps ) ) |
|
| 3 | elmptrab2.s2 | |- ( x = X -> B = C ) |
|
| 4 | elmptrab2.ex | |- B e. _V |
|
| 5 | elmptrab2.rc | |- ( Y e. C -> X e. W ) |
|
| 6 | 4 | a1i | |- ( x e. _V -> B e. _V ) |
| 7 | 1 2 3 6 | elmptrab | |- ( Y e. ( F ` X ) <-> ( X e. _V /\ Y e. C /\ ps ) ) |
| 8 | 3simpc | |- ( ( X e. _V /\ Y e. C /\ ps ) -> ( Y e. C /\ ps ) ) |
|
| 9 | 5 | elexd | |- ( Y e. C -> X e. _V ) |
| 10 | 9 | adantr | |- ( ( Y e. C /\ ps ) -> X e. _V ) |
| 11 | simpl | |- ( ( Y e. C /\ ps ) -> Y e. C ) |
|
| 12 | simpr | |- ( ( Y e. C /\ ps ) -> ps ) |
|
| 13 | 10 11 12 | 3jca | |- ( ( Y e. C /\ ps ) -> ( X e. _V /\ Y e. C /\ ps ) ) |
| 14 | 8 13 | impbii | |- ( ( X e. _V /\ Y e. C /\ ps ) <-> ( Y e. C /\ ps ) ) |
| 15 | 7 14 | bitri | |- ( Y e. ( F ` X ) <-> ( Y e. C /\ ps ) ) |