This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014) (Revised by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellspsn5b.v | |- V = ( Base ` W ) |
|
| ellspsn5b.s | |- S = ( LSubSp ` W ) |
||
| ellspsn5b.n | |- N = ( LSpan ` W ) |
||
| ellspsn5b.w | |- ( ph -> W e. LMod ) |
||
| ellspsn5b.a | |- ( ph -> U e. S ) |
||
| Assertion | ellspsn6 | |- ( ph -> ( X e. U <-> ( X e. V /\ ( N ` { X } ) C_ U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5b.v | |- V = ( Base ` W ) |
|
| 2 | ellspsn5b.s | |- S = ( LSubSp ` W ) |
|
| 3 | ellspsn5b.n | |- N = ( LSpan ` W ) |
|
| 4 | ellspsn5b.w | |- ( ph -> W e. LMod ) |
|
| 5 | ellspsn5b.a | |- ( ph -> U e. S ) |
|
| 6 | 1 2 | lssel | |- ( ( U e. S /\ X e. U ) -> X e. V ) |
| 7 | 5 6 | sylan | |- ( ( ph /\ X e. U ) -> X e. V ) |
| 8 | 4 | adantr | |- ( ( ph /\ X e. U ) -> W e. LMod ) |
| 9 | 5 | adantr | |- ( ( ph /\ X e. U ) -> U e. S ) |
| 10 | simpr | |- ( ( ph /\ X e. U ) -> X e. U ) |
|
| 11 | 2 3 | lspsnss | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` { X } ) C_ U ) |
| 12 | 8 9 10 11 | syl3anc | |- ( ( ph /\ X e. U ) -> ( N ` { X } ) C_ U ) |
| 13 | 7 12 | jca | |- ( ( ph /\ X e. U ) -> ( X e. V /\ ( N ` { X } ) C_ U ) ) |
| 14 | 1 3 | lspsnid | |- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 15 | 4 14 | sylan | |- ( ( ph /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 16 | ssel | |- ( ( N ` { X } ) C_ U -> ( X e. ( N ` { X } ) -> X e. U ) ) |
|
| 17 | 15 16 | syl5com | |- ( ( ph /\ X e. V ) -> ( ( N ` { X } ) C_ U -> X e. U ) ) |
| 18 | 17 | impr | |- ( ( ph /\ ( X e. V /\ ( N ` { X } ) C_ U ) ) -> X e. U ) |
| 19 | 13 18 | impbida | |- ( ph -> ( X e. U <-> ( X e. V /\ ( N ` { X } ) C_ U ) ) ) |