This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of elirrv as of 27-Dec-2025. (Contributed by NM, 19-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elirrvOLD | ⊢ ¬ 𝑥 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 2 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ { 𝑥 } ↔ 𝑥 ∈ { 𝑥 } ) ) | |
| 3 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 4 | 2 3 | speivw | ⊢ ∃ 𝑦 𝑦 ∈ { 𝑥 } |
| 5 | zfregcl | ⊢ ( { 𝑥 } ∈ V → ( ∃ 𝑦 𝑦 ∈ { 𝑥 } → ∃ 𝑦 ∈ { 𝑥 } ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ) ) | |
| 6 | 1 4 5 | mp2 | ⊢ ∃ 𝑦 ∈ { 𝑥 } ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } |
| 7 | velsn | ⊢ ( 𝑦 ∈ { 𝑥 } ↔ 𝑦 = 𝑥 ) | |
| 8 | ax9 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦 ) ) | |
| 9 | 8 | equcoms | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 ∈ 𝑥 → 𝑥 ∈ 𝑦 ) ) |
| 10 | 9 | com12 | ⊢ ( 𝑥 ∈ 𝑥 → ( 𝑦 = 𝑥 → 𝑥 ∈ 𝑦 ) ) |
| 11 | 7 10 | biimtrid | ⊢ ( 𝑥 ∈ 𝑥 → ( 𝑦 ∈ { 𝑥 } → 𝑥 ∈ 𝑦 ) ) |
| 12 | eleq1w | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ { 𝑥 } ↔ 𝑥 ∈ { 𝑥 } ) ) | |
| 13 | 12 | notbid | ⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑧 ∈ { 𝑥 } ↔ ¬ 𝑥 ∈ { 𝑥 } ) ) |
| 14 | 13 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } → ( 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ { 𝑥 } ) ) |
| 15 | 3 14 | mt2i | ⊢ ( ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } → ¬ 𝑥 ∈ 𝑦 ) |
| 16 | 11 15 | nsyli | ⊢ ( 𝑥 ∈ 𝑥 → ( ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } → ¬ 𝑦 ∈ { 𝑥 } ) ) |
| 17 | 16 | con2d | ⊢ ( 𝑥 ∈ 𝑥 → ( 𝑦 ∈ { 𝑥 } → ¬ ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ) ) |
| 18 | 17 | ralrimiv | ⊢ ( 𝑥 ∈ 𝑥 → ∀ 𝑦 ∈ { 𝑥 } ¬ ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ) |
| 19 | ralnex | ⊢ ( ∀ 𝑦 ∈ { 𝑥 } ¬ ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ↔ ¬ ∃ 𝑦 ∈ { 𝑥 } ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ) | |
| 20 | 18 19 | sylib | ⊢ ( 𝑥 ∈ 𝑥 → ¬ ∃ 𝑦 ∈ { 𝑥 } ∀ 𝑧 ∈ 𝑦 ¬ 𝑧 ∈ { 𝑥 } ) |
| 21 | 6 20 | mt2 | ⊢ ¬ 𝑥 ∈ 𝑥 |