This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of an open interval shifted by a displacement. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eliooshift.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| eliooshift.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| eliooshift.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| eliooshift.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| Assertion | eliooshift | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) ↔ ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) (,) ( 𝐶 + 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooshift.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | eliooshift.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | eliooshift.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | eliooshift.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | 1 4 | readdcld | ⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ℝ ) |
| 6 | 5 1 | 2thd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐷 ) ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
| 7 | 2 1 4 | ltadd1d | ⊢ ( 𝜑 → ( 𝐵 < 𝐴 ↔ ( 𝐵 + 𝐷 ) < ( 𝐴 + 𝐷 ) ) ) |
| 8 | 7 | bicomd | ⊢ ( 𝜑 → ( ( 𝐵 + 𝐷 ) < ( 𝐴 + 𝐷 ) ↔ 𝐵 < 𝐴 ) ) |
| 9 | 1 3 4 | ltadd1d | ⊢ ( 𝜑 → ( 𝐴 < 𝐶 ↔ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ) |
| 10 | 9 | bicomd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ↔ 𝐴 < 𝐶 ) ) |
| 11 | 6 8 10 | 3anbi123d | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐷 ) ∈ ℝ ∧ ( 𝐵 + 𝐷 ) < ( 𝐴 + 𝐷 ) ∧ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
| 12 | 2 4 | readdcld | ⊢ ( 𝜑 → ( 𝐵 + 𝐷 ) ∈ ℝ ) |
| 13 | 12 | rexrd | ⊢ ( 𝜑 → ( 𝐵 + 𝐷 ) ∈ ℝ* ) |
| 14 | 3 4 | readdcld | ⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
| 15 | 14 | rexrd | ⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ ℝ* ) |
| 16 | elioo2 | ⊢ ( ( ( 𝐵 + 𝐷 ) ∈ ℝ* ∧ ( 𝐶 + 𝐷 ) ∈ ℝ* ) → ( ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) (,) ( 𝐶 + 𝐷 ) ) ↔ ( ( 𝐴 + 𝐷 ) ∈ ℝ ∧ ( 𝐵 + 𝐷 ) < ( 𝐴 + 𝐷 ) ∧ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ) ) | |
| 17 | 13 15 16 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) (,) ( 𝐶 + 𝐷 ) ) ↔ ( ( 𝐴 + 𝐷 ) ∈ ℝ ∧ ( 𝐵 + 𝐷 ) < ( 𝐴 + 𝐷 ) ∧ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ) ) |
| 18 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 19 | 3 | rexrd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 20 | elioo2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶 ) ) ) | |
| 21 | 18 19 20 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶 ) ) ) |
| 22 | 11 17 21 | 3bitr4rd | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 (,) 𝐶 ) ↔ ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) (,) ( 𝐶 + 𝐷 ) ) ) ) |