This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of an open interval shifted by a displacement. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eliooshift.a | |- ( ph -> A e. RR ) |
|
| eliooshift.b | |- ( ph -> B e. RR ) |
||
| eliooshift.c | |- ( ph -> C e. RR ) |
||
| eliooshift.d | |- ( ph -> D e. RR ) |
||
| Assertion | eliooshift | |- ( ph -> ( A e. ( B (,) C ) <-> ( A + D ) e. ( ( B + D ) (,) ( C + D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooshift.a | |- ( ph -> A e. RR ) |
|
| 2 | eliooshift.b | |- ( ph -> B e. RR ) |
|
| 3 | eliooshift.c | |- ( ph -> C e. RR ) |
|
| 4 | eliooshift.d | |- ( ph -> D e. RR ) |
|
| 5 | 1 4 | readdcld | |- ( ph -> ( A + D ) e. RR ) |
| 6 | 5 1 | 2thd | |- ( ph -> ( ( A + D ) e. RR <-> A e. RR ) ) |
| 7 | 2 1 4 | ltadd1d | |- ( ph -> ( B < A <-> ( B + D ) < ( A + D ) ) ) |
| 8 | 7 | bicomd | |- ( ph -> ( ( B + D ) < ( A + D ) <-> B < A ) ) |
| 9 | 1 3 4 | ltadd1d | |- ( ph -> ( A < C <-> ( A + D ) < ( C + D ) ) ) |
| 10 | 9 | bicomd | |- ( ph -> ( ( A + D ) < ( C + D ) <-> A < C ) ) |
| 11 | 6 8 10 | 3anbi123d | |- ( ph -> ( ( ( A + D ) e. RR /\ ( B + D ) < ( A + D ) /\ ( A + D ) < ( C + D ) ) <-> ( A e. RR /\ B < A /\ A < C ) ) ) |
| 12 | 2 4 | readdcld | |- ( ph -> ( B + D ) e. RR ) |
| 13 | 12 | rexrd | |- ( ph -> ( B + D ) e. RR* ) |
| 14 | 3 4 | readdcld | |- ( ph -> ( C + D ) e. RR ) |
| 15 | 14 | rexrd | |- ( ph -> ( C + D ) e. RR* ) |
| 16 | elioo2 | |- ( ( ( B + D ) e. RR* /\ ( C + D ) e. RR* ) -> ( ( A + D ) e. ( ( B + D ) (,) ( C + D ) ) <-> ( ( A + D ) e. RR /\ ( B + D ) < ( A + D ) /\ ( A + D ) < ( C + D ) ) ) ) |
|
| 17 | 13 15 16 | syl2anc | |- ( ph -> ( ( A + D ) e. ( ( B + D ) (,) ( C + D ) ) <-> ( ( A + D ) e. RR /\ ( B + D ) < ( A + D ) /\ ( A + D ) < ( C + D ) ) ) ) |
| 18 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 19 | 3 | rexrd | |- ( ph -> C e. RR* ) |
| 20 | elioo2 | |- ( ( B e. RR* /\ C e. RR* ) -> ( A e. ( B (,) C ) <-> ( A e. RR /\ B < A /\ A < C ) ) ) |
|
| 21 | 18 19 20 | syl2anc | |- ( ph -> ( A e. ( B (,) C ) <-> ( A e. RR /\ B < A /\ A < C ) ) ) |
| 22 | 11 17 21 | 3bitr4rd | |- ( ph -> ( A e. ( B (,) C ) <-> ( A + D ) e. ( ( B + D ) (,) ( C + D ) ) ) ) |