This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elimasni | |- ( C e. ( A " { B } ) -> B A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | |- -. C e. (/) |
|
| 2 | snprc | |- ( -. B e. _V <-> { B } = (/) ) |
|
| 3 | 2 | biimpi | |- ( -. B e. _V -> { B } = (/) ) |
| 4 | 3 | imaeq2d | |- ( -. B e. _V -> ( A " { B } ) = ( A " (/) ) ) |
| 5 | ima0 | |- ( A " (/) ) = (/) |
|
| 6 | 4 5 | eqtrdi | |- ( -. B e. _V -> ( A " { B } ) = (/) ) |
| 7 | 6 | eleq2d | |- ( -. B e. _V -> ( C e. ( A " { B } ) <-> C e. (/) ) ) |
| 8 | 1 7 | mtbiri | |- ( -. B e. _V -> -. C e. ( A " { B } ) ) |
| 9 | 8 | con4i | |- ( C e. ( A " { B } ) -> B e. _V ) |
| 10 | elex | |- ( C e. ( A " { B } ) -> C e. _V ) |
|
| 11 | 9 10 | jca | |- ( C e. ( A " { B } ) -> ( B e. _V /\ C e. _V ) ) |
| 12 | elimasng1 | |- ( ( B e. _V /\ C e. _V ) -> ( C e. ( A " { B } ) <-> B A C ) ) |
|
| 13 | 12 | biimpd | |- ( ( B e. _V /\ C e. _V ) -> ( C e. ( A " { B } ) -> B A C ) ) |
| 14 | 11 13 | mpcom | |- ( C e. ( A " { B } ) -> B A C ) |