This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homarcl.h | |- H = ( HomA ` C ) |
|
| homafval.b | |- B = ( Base ` C ) |
||
| homafval.c | |- ( ph -> C e. Cat ) |
||
| homaval.j | |- J = ( Hom ` C ) |
||
| homaval.x | |- ( ph -> X e. B ) |
||
| homaval.y | |- ( ph -> Y e. B ) |
||
| Assertion | elhoma | |- ( ph -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | |- H = ( HomA ` C ) |
|
| 2 | homafval.b | |- B = ( Base ` C ) |
|
| 3 | homafval.c | |- ( ph -> C e. Cat ) |
|
| 4 | homaval.j | |- J = ( Hom ` C ) |
|
| 5 | homaval.x | |- ( ph -> X e. B ) |
|
| 6 | homaval.y | |- ( ph -> Y e. B ) |
|
| 7 | 1 2 3 4 5 6 | homaval | |- ( ph -> ( X H Y ) = ( { <. X , Y >. } X. ( X J Y ) ) ) |
| 8 | 7 | breqd | |- ( ph -> ( Z ( X H Y ) F <-> Z ( { <. X , Y >. } X. ( X J Y ) ) F ) ) |
| 9 | brxp | |- ( Z ( { <. X , Y >. } X. ( X J Y ) ) F <-> ( Z e. { <. X , Y >. } /\ F e. ( X J Y ) ) ) |
|
| 10 | opex | |- <. X , Y >. e. _V |
|
| 11 | 10 | elsn2 | |- ( Z e. { <. X , Y >. } <-> Z = <. X , Y >. ) |
| 12 | 11 | anbi1i | |- ( ( Z e. { <. X , Y >. } /\ F e. ( X J Y ) ) <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) |
| 13 | 9 12 | bitri | |- ( Z ( { <. X , Y >. } X. ( X J Y ) ) F <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) |
| 14 | 8 13 | bitrdi | |- ( ph -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) ) |