This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elgz | |- ( A e. Z[i] <-> ( A e. CC /\ ( Re ` A ) e. ZZ /\ ( Im ` A ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = A -> ( Re ` x ) = ( Re ` A ) ) |
|
| 2 | 1 | eleq1d | |- ( x = A -> ( ( Re ` x ) e. ZZ <-> ( Re ` A ) e. ZZ ) ) |
| 3 | fveq2 | |- ( x = A -> ( Im ` x ) = ( Im ` A ) ) |
|
| 4 | 3 | eleq1d | |- ( x = A -> ( ( Im ` x ) e. ZZ <-> ( Im ` A ) e. ZZ ) ) |
| 5 | 2 4 | anbi12d | |- ( x = A -> ( ( ( Re ` x ) e. ZZ /\ ( Im ` x ) e. ZZ ) <-> ( ( Re ` A ) e. ZZ /\ ( Im ` A ) e. ZZ ) ) ) |
| 6 | df-gz | |- Z[i] = { x e. CC | ( ( Re ` x ) e. ZZ /\ ( Im ` x ) e. ZZ ) } |
|
| 7 | 5 6 | elrab2 | |- ( A e. Z[i] <-> ( A e. CC /\ ( ( Re ` A ) e. ZZ /\ ( Im ` A ) e. ZZ ) ) ) |
| 8 | 3anass | |- ( ( A e. CC /\ ( Re ` A ) e. ZZ /\ ( Im ` A ) e. ZZ ) <-> ( A e. CC /\ ( ( Re ` A ) e. ZZ /\ ( Im ` A ) e. ZZ ) ) ) |
|
| 9 | 7 8 | bitr4i | |- ( A e. Z[i] <-> ( A e. CC /\ ( Re ` A ) e. ZZ /\ ( Im ` A ) e. ZZ ) ) |