This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer M is in an open interval starting at 0 , except 0 , then ( M - 1 ) is also in that interval. (Contributed by Thierry Arnoux, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elfzodif0.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 0 } ) ) | |
| elfzodif0.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | elfzodif0 | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzodif0.m | ⊢ ( 𝜑 → 𝑀 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 0 } ) ) | |
| 2 | elfzodif0.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 3 | 2 | nn0zd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 4 | fzossrbm1 | ⊢ ( 𝑁 ∈ ℤ → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 6 | fzossz | ⊢ ( 0 ..^ 𝑁 ) ⊆ ℤ | |
| 7 | 1 | eldifad | ⊢ ( 𝜑 → 𝑀 ∈ ( 0 ..^ 𝑁 ) ) |
| 8 | 6 7 | sselid | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 9 | eldifsni | ⊢ ( 𝑀 ∈ ( ( 0 ..^ 𝑁 ) ∖ { 0 } ) → 𝑀 ≠ 0 ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 11 | fzo1fzo0n0 | ⊢ ( 𝑀 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑀 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑀 ≠ 0 ) ) | |
| 12 | 7 10 11 | sylanbrc | ⊢ ( 𝜑 → 𝑀 ∈ ( 1 ..^ 𝑁 ) ) |
| 13 | elfzom1b | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) ) | |
| 14 | 13 | biimpa | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) |
| 15 | 8 3 12 14 | syl21anc | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) |
| 16 | 5 15 | sseldd | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |