This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer M is in an open interval starting at 0 , except 0 , then ( M - 1 ) is also in that interval. (Contributed by Thierry Arnoux, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elfzodif0.m | |- ( ph -> M e. ( ( 0 ..^ N ) \ { 0 } ) ) |
|
| elfzodif0.n | |- ( ph -> N e. NN0 ) |
||
| Assertion | elfzodif0 | |- ( ph -> ( M - 1 ) e. ( 0 ..^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzodif0.m | |- ( ph -> M e. ( ( 0 ..^ N ) \ { 0 } ) ) |
|
| 2 | elfzodif0.n | |- ( ph -> N e. NN0 ) |
|
| 3 | 2 | nn0zd | |- ( ph -> N e. ZZ ) |
| 4 | fzossrbm1 | |- ( N e. ZZ -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
|
| 5 | 3 4 | syl | |- ( ph -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
| 6 | fzossz | |- ( 0 ..^ N ) C_ ZZ |
|
| 7 | 1 | eldifad | |- ( ph -> M e. ( 0 ..^ N ) ) |
| 8 | 6 7 | sselid | |- ( ph -> M e. ZZ ) |
| 9 | eldifsni | |- ( M e. ( ( 0 ..^ N ) \ { 0 } ) -> M =/= 0 ) |
|
| 10 | 1 9 | syl | |- ( ph -> M =/= 0 ) |
| 11 | fzo1fzo0n0 | |- ( M e. ( 1 ..^ N ) <-> ( M e. ( 0 ..^ N ) /\ M =/= 0 ) ) |
|
| 12 | 7 10 11 | sylanbrc | |- ( ph -> M e. ( 1 ..^ N ) ) |
| 13 | elfzom1b | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ( 1 ..^ N ) <-> ( M - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) ) |
|
| 14 | 13 | biimpa | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M e. ( 1 ..^ N ) ) -> ( M - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) |
| 15 | 8 3 12 14 | syl21anc | |- ( ph -> ( M - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) |
| 16 | 5 15 | sseldd | |- ( ph -> ( M - 1 ) e. ( 0 ..^ N ) ) |