This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The element of the class of functions and the function predicate are the same when F is a set. (Contributed by Peter Mazsa, 26-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfunsALTVfunALTV | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ FunsALTV ↔ FunALTV 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossex | ⊢ ( 𝐹 ∈ 𝑉 → ≀ 𝐹 ∈ V ) | |
| 2 | elcnvrefrelsrel | ⊢ ( ≀ 𝐹 ∈ V → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 ∈ 𝑉 → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹 ) ) |
| 4 | elrelsrel | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ Rels ↔ Rel 𝐹 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝐹 ∈ 𝑉 → ( ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹 ) ) ) |
| 6 | elfunsALTV | ⊢ ( 𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ) | |
| 7 | df-funALTV | ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹 ) ) | |
| 8 | 5 6 7 | 3bitr4g | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ FunsALTV ↔ FunALTV 𝐹 ) ) |