This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a set then the class of cosets by A is a set. (Contributed by Peter Mazsa, 4-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossex | ⊢ ( 𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcoss3 | ⊢ ≀ 𝐴 = ( 𝐴 ∘ ◡ 𝐴 ) | |
| 2 | cnvexg | ⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐴 ∈ V ) | |
| 3 | coexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ◡ 𝐴 ∈ V ) → ( 𝐴 ∘ ◡ 𝐴 ) ∈ V ) | |
| 4 | 2 3 | mpdan | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∘ ◡ 𝐴 ) ∈ V ) |
| 5 | 1 4 | eqeltrid | ⊢ ( 𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V ) |