This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfunsALTV5 | ⊢ ( 𝐹 ∈ FunsALTV ↔ ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝐹 ∩ [ 𝑦 ] ◡ 𝐹 ) = ∅ ) ∧ 𝐹 ∈ Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfunsALTV | ⊢ ( 𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ) | |
| 2 | cosselcnvrefrels5 | ⊢ ( ≀ 𝐹 ∈ CnvRefRels ↔ ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝐹 ∩ [ 𝑦 ] ◡ 𝐹 ) = ∅ ) ∧ ≀ 𝐹 ∈ Rels ) ) | |
| 3 | cosselrels | ⊢ ( 𝐹 ∈ Rels → ≀ 𝐹 ∈ Rels ) | |
| 4 | 3 | biantrud | ⊢ ( 𝐹 ∈ Rels → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝐹 ∩ [ 𝑦 ] ◡ 𝐹 ) = ∅ ) ↔ ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝐹 ∩ [ 𝑦 ] ◡ 𝐹 ) = ∅ ) ∧ ≀ 𝐹 ∈ Rels ) ) ) |
| 5 | 2 4 | bitr4id | ⊢ ( 𝐹 ∈ Rels → ( ≀ 𝐹 ∈ CnvRefRels ↔ ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝐹 ∩ [ 𝑦 ] ◡ 𝐹 ) = ∅ ) ) ) |
| 6 | 5 | pm5.32ri | ⊢ ( ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝐹 ∩ [ 𝑦 ] ◡ 𝐹 ) = ∅ ) ∧ 𝐹 ∈ Rels ) ) |
| 7 | 1 6 | bitri | ⊢ ( 𝐹 ∈ FunsALTV ↔ ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝐹 ∩ [ 𝑦 ] ◡ 𝐹 ) = ∅ ) ∧ 𝐹 ∈ Rels ) ) |