This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfunsALTV5 | |- ( F e. FunsALTV <-> ( A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) /\ F e. Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfunsALTV | |- ( F e. FunsALTV <-> ( ,~ F e. CnvRefRels /\ F e. Rels ) ) |
|
| 2 | cosselcnvrefrels5 | |- ( ,~ F e. CnvRefRels <-> ( A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) /\ ,~ F e. Rels ) ) |
|
| 3 | cosselrels | |- ( F e. Rels -> ,~ F e. Rels ) |
|
| 4 | 3 | biantrud | |- ( F e. Rels -> ( A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) <-> ( A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) /\ ,~ F e. Rels ) ) ) |
| 5 | 2 4 | bitr4id | |- ( F e. Rels -> ( ,~ F e. CnvRefRels <-> A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) ) ) |
| 6 | 5 | pm5.32ri | |- ( ( ,~ F e. CnvRefRels /\ F e. Rels ) <-> ( A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) /\ F e. Rels ) ) |
| 7 | 1 6 | bitri | |- ( F e. FunsALTV <-> ( A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) /\ F e. Rels ) ) |