This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on A .) Alternate definition is dfcoeleqvrel . For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel . (Contributed by Peter Mazsa, 11-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | 0 | wcoeleqvrel | ⊢ CoElEqvRel 𝐴 |
| 2 | cep | ⊢ E | |
| 3 | 2 | ccnv | ⊢ ◡ E |
| 4 | 3 0 | cres | ⊢ ( ◡ E ↾ 𝐴 ) |
| 5 | 4 | ccoss | ⊢ ≀ ( ◡ E ↾ 𝐴 ) |
| 6 | 5 | weqvrel | ⊢ EqvRel ≀ ( ◡ E ↾ 𝐴 ) |
| 7 | 1 6 | wb | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) |