This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the elements of A are disjoint, then it has equivalent coelements (former prter1 ). Special case of disjim . (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018) ( Revised by Peter Mazsa, 23-Sep-2021.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjim | |- ( ElDisj A -> CoElEqvRel A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjim | |- ( Disj ( `' _E |` A ) -> EqvRel ,~ ( `' _E |` A ) ) |
|
| 2 | df-eldisj | |- ( ElDisj A <-> Disj ( `' _E |` A ) ) |
|
| 3 | df-coeleqvrel | |- ( CoElEqvRel A <-> EqvRel ,~ ( `' _E |` A ) ) |
|
| 4 | 1 2 3 | 3imtr4i | |- ( ElDisj A -> CoElEqvRel A ) |