This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 25-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcnvrefrels2 | ⊢ ( 𝑅 ∈ CnvRefRels ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ 𝑅 ∈ Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnvrefrels2 | ⊢ CnvRefRels = { 𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) } | |
| 2 | id | ⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) | |
| 3 | dmeq | ⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) | |
| 4 | rneq | ⊢ ( 𝑟 = 𝑅 → ran 𝑟 = ran 𝑅 ) | |
| 5 | 3 4 | xpeq12d | ⊢ ( 𝑟 = 𝑅 → ( dom 𝑟 × ran 𝑟 ) = ( dom 𝑅 × ran 𝑅 ) ) |
| 6 | 5 | ineq2d | ⊢ ( 𝑟 = 𝑅 → ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) = ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ) |
| 7 | 2 6 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) |
| 8 | 1 7 | rabeqel | ⊢ ( 𝑅 ∈ CnvRefRels ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ 𝑅 ∈ Rels ) ) |