This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 . (Contributed by Peter Mazsa, 21-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcnvrefrels2 | ⊢ CnvRefRels = { 𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnvrefrels | ⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | |
| 2 | df-cnvrefs | ⊢ CnvRefs = { 𝑟 ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) } | |
| 3 | dmexg | ⊢ ( 𝑟 ∈ V → dom 𝑟 ∈ V ) | |
| 4 | 3 | elv | ⊢ dom 𝑟 ∈ V |
| 5 | rnexg | ⊢ ( 𝑟 ∈ V → ran 𝑟 ∈ V ) | |
| 6 | 5 | elv | ⊢ ran 𝑟 ∈ V |
| 7 | 4 6 | xpex | ⊢ ( dom 𝑟 × ran 𝑟 ) ∈ V |
| 8 | inex2g | ⊢ ( ( dom 𝑟 × ran 𝑟 ) ∈ V → ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V ) | |
| 9 | brcnvssr | ⊢ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V → ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ) ) | |
| 10 | 7 8 9 | mp2b | ⊢ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ) |
| 11 | elrels6 | ⊢ ( 𝑟 ∈ V → ( 𝑟 ∈ Rels ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) = 𝑟 ) ) | |
| 12 | 11 | elv | ⊢ ( 𝑟 ∈ Rels ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) = 𝑟 ) |
| 13 | 12 | biimpi | ⊢ ( 𝑟 ∈ Rels → ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) = 𝑟 ) |
| 14 | 13 | sseq1d | ⊢ ( 𝑟 ∈ Rels → ( ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ 𝑟 ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ) ) |
| 15 | 10 14 | bitrid | ⊢ ( 𝑟 ∈ Rels → ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ 𝑟 ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ) ) |
| 16 | 1 2 15 | abeqinbi | ⊢ CnvRefRels = { 𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) } |