This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 25-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcnvrefrels2 | |- ( R e. CnvRefRels <-> ( R C_ ( _I i^i ( dom R X. ran R ) ) /\ R e. Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnvrefrels2 | |- CnvRefRels = { r e. Rels | r C_ ( _I i^i ( dom r X. ran r ) ) } |
|
| 2 | id | |- ( r = R -> r = R ) |
|
| 3 | dmeq | |- ( r = R -> dom r = dom R ) |
|
| 4 | rneq | |- ( r = R -> ran r = ran R ) |
|
| 5 | 3 4 | xpeq12d | |- ( r = R -> ( dom r X. ran r ) = ( dom R X. ran R ) ) |
| 6 | 5 | ineq2d | |- ( r = R -> ( _I i^i ( dom r X. ran r ) ) = ( _I i^i ( dom R X. ran R ) ) ) |
| 7 | 2 6 | sseq12d | |- ( r = R -> ( r C_ ( _I i^i ( dom r X. ran r ) ) <-> R C_ ( _I i^i ( dom R X. ran R ) ) ) ) |
| 8 | 1 7 | rabeqel | |- ( R e. CnvRefRels <-> ( R C_ ( _I i^i ( dom R X. ran R ) ) /\ R e. Rels ) ) |