This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of continuous complex functions from A to B . (Contributed by Paul Chapman, 26-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elcncf1i.1 | |- F : A --> B |
|
| elcncf1i.2 | |- ( ( x e. A /\ y e. RR+ ) -> Z e. RR+ ) |
||
| elcncf1i.3 | |- ( ( ( x e. A /\ w e. A ) /\ y e. RR+ ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) |
||
| Assertion | elcncf1ii | |- ( ( A C_ CC /\ B C_ CC ) -> F e. ( A -cn-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcncf1i.1 | |- F : A --> B |
|
| 2 | elcncf1i.2 | |- ( ( x e. A /\ y e. RR+ ) -> Z e. RR+ ) |
|
| 3 | elcncf1i.3 | |- ( ( ( x e. A /\ w e. A ) /\ y e. RR+ ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) |
|
| 4 | 1 | a1i | |- ( T. -> F : A --> B ) |
| 5 | 2 | a1i | |- ( T. -> ( ( x e. A /\ y e. RR+ ) -> Z e. RR+ ) ) |
| 6 | 3 | a1i | |- ( T. -> ( ( ( x e. A /\ w e. A ) /\ y e. RR+ ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) ) |
| 7 | 4 5 6 | elcncf1di | |- ( T. -> ( ( A C_ CC /\ B C_ CC ) -> F e. ( A -cn-> B ) ) ) |
| 8 | 7 | mptru | |- ( ( A C_ CC /\ B C_ CC ) -> F e. ( A -cn-> B ) ) |