This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of continuous complex functions from A to B . (Contributed by Paul Chapman, 26-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elcncf1d.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| elcncf1d.2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) → 𝑍 ∈ ℝ+ ) ) | ||
| elcncf1d.3 | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) | ||
| Assertion | elcncf1di | ⊢ ( 𝜑 → ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcncf1d.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | elcncf1d.2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) → 𝑍 ∈ ℝ+ ) ) | |
| 3 | elcncf1d.3 | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) | |
| 4 | 2 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → 𝑍 ∈ ℝ+ ) |
| 5 | an32 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ 𝐴 ) ) | |
| 6 | 5 | bianass | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝐴 ) ) |
| 7 | 3 | imp | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ) → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 8 | 6 7 | sylbir | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 9 | 8 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 10 | breq2 | ⊢ ( 𝑧 = 𝑍 → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 ↔ ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 ) ) | |
| 11 | 10 | rspceaimv | ⊢ ( ( 𝑍 ∈ ℝ+ ∧ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑍 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 12 | 4 9 11 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 13 | 12 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 14 | 1 13 | jca | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 15 | elcncf | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) ) | |
| 16 | 14 15 | syl5ibrcom | ⊢ ( 𝜑 → ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) ) |