This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction, using two substitution hypotheses to avoid a disjoint variable condition on x and A . This is to elabg what sbievw2 is to sbievw . (Contributed by SN, 20-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elabgw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| elabgw.2 | ⊢ ( 𝑦 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | elabgw | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabgw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elabgw.2 | ⊢ ( 𝑦 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) ) | |
| 4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 5 | 1 | sbievw | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 6 | 4 5 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
| 7 | 3 2 6 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜒 ) ) |