This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: sbievw applied twice, avoiding a DV condition on x , y . Based on proofs by Wolf Lammen. (Contributed by Steven Nguyen, 29-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbievw2.1 | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜒 ) ) | |
| sbievw2.2 | ⊢ ( 𝑤 = 𝑦 → ( 𝜒 ↔ 𝜓 ) ) | ||
| Assertion | sbievw2 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbievw2.1 | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | sbievw2.2 | ⊢ ( 𝑤 = 𝑦 → ( 𝜒 ↔ 𝜓 ) ) | |
| 3 | sbcom3vv | ⊢ ( [ 𝑦 / 𝑤 ] [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑤 ] [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 4 | 1 | sbievw | ⊢ ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝜒 ) |
| 5 | 4 | sbbii | ⊢ ( [ 𝑦 / 𝑤 ] [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑤 ] 𝜒 ) |
| 6 | sbv | ⊢ ( [ 𝑦 / 𝑤 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 7 | 3 5 6 | 3bitr3i | ⊢ ( [ 𝑦 / 𝑤 ] 𝜒 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 8 | 2 | sbievw | ⊢ ( [ 𝑦 / 𝑤 ] 𝜒 ↔ 𝜓 ) |
| 9 | 7 8 | bitr3i | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |