This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of implication over biconditional. Theorem *5.74 of WhiteheadRussell p. 126. (Contributed by NM, 1-Aug-1994) (Proof shortened by Wolf Lammen, 11-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.74 | ⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp | ⊢ ( ( 𝜓 ↔ 𝜒 ) → ( 𝜓 → 𝜒 ) ) | |
| 2 | 1 | imim3i | ⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) |
| 3 | biimpr | ⊢ ( ( 𝜓 ↔ 𝜒 ) → ( 𝜒 → 𝜓 ) ) | |
| 4 | 3 | imim3i | ⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) → ( ( 𝜑 → 𝜒 ) → ( 𝜑 → 𝜓 ) ) ) |
| 5 | 2 4 | impbid | ⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
| 6 | biimp | ⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) | |
| 7 | 6 | pm2.86d | ⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
| 8 | biimpr | ⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → 𝜒 ) → ( 𝜑 → 𝜓 ) ) ) | |
| 9 | 8 | pm2.86d | ⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) → ( 𝜑 → ( 𝜒 → 𝜓 ) ) ) |
| 10 | 7 9 | impbidd | ⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) → ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 11 | 5 10 | impbii | ⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |