This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of the Euclidean space is the set of n-tuples of real numbers. (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ehlval.e | ⊢ 𝐸 = ( 𝔼hil ‘ 𝑁 ) | |
| Assertion | ehlbase | ⊢ ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... 𝑁 ) ) = ( Base ‘ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehlval.e | ⊢ 𝐸 = ( 𝔼hil ‘ 𝑁 ) | |
| 2 | rabid2 | ⊢ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 } ↔ ∀ 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) 𝑓 finSupp 0 ) | |
| 3 | elmapi | ⊢ ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 𝑓 : ( 1 ... 𝑁 ) ⟶ ℝ ) | |
| 4 | fzfid | ⊢ ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 5 | 0red | ⊢ ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 0 ∈ ℝ ) | |
| 6 | 3 4 5 | fdmfifsupp | ⊢ ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 𝑓 finSupp 0 ) |
| 7 | 2 6 | mprgbir | ⊢ ( ℝ ↑m ( 1 ... 𝑁 ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 } |
| 8 | ovex | ⊢ ( 1 ... 𝑁 ) ∈ V | |
| 9 | eqid | ⊢ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) = ( ℝ^ ‘ ( 1 ... 𝑁 ) ) | |
| 10 | eqid | ⊢ ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) | |
| 11 | 9 10 | rrxbase | ⊢ ( ( 1 ... 𝑁 ) ∈ V → ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 } ) |
| 12 | 8 11 | ax-mp | ⊢ ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 } |
| 13 | 7 12 | eqtr4i | ⊢ ( ℝ ↑m ( 1 ... 𝑁 ) ) = ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) |
| 14 | 1 | ehlval | ⊢ ( 𝑁 ∈ ℕ0 → 𝐸 = ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) |
| 15 | 14 | fveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( Base ‘ 𝐸 ) = ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) |
| 16 | 13 15 | eqtr4id | ⊢ ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... 𝑁 ) ) = ( Base ‘ 𝐸 ) ) |