This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of the Euclidean space is the set of n-tuples of real numbers. (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ehlval.e | |- E = ( EEhil ` N ) |
|
| Assertion | ehlbase | |- ( N e. NN0 -> ( RR ^m ( 1 ... N ) ) = ( Base ` E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehlval.e | |- E = ( EEhil ` N ) |
|
| 2 | rabid2 | |- ( ( RR ^m ( 1 ... N ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } <-> A. f e. ( RR ^m ( 1 ... N ) ) f finSupp 0 ) |
|
| 3 | elmapi | |- ( f e. ( RR ^m ( 1 ... N ) ) -> f : ( 1 ... N ) --> RR ) |
|
| 4 | fzfid | |- ( f e. ( RR ^m ( 1 ... N ) ) -> ( 1 ... N ) e. Fin ) |
|
| 5 | 0red | |- ( f e. ( RR ^m ( 1 ... N ) ) -> 0 e. RR ) |
|
| 6 | 3 4 5 | fdmfifsupp | |- ( f e. ( RR ^m ( 1 ... N ) ) -> f finSupp 0 ) |
| 7 | 2 6 | mprgbir | |- ( RR ^m ( 1 ... N ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } |
| 8 | ovex | |- ( 1 ... N ) e. _V |
|
| 9 | eqid | |- ( RR^ ` ( 1 ... N ) ) = ( RR^ ` ( 1 ... N ) ) |
|
| 10 | eqid | |- ( Base ` ( RR^ ` ( 1 ... N ) ) ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) |
|
| 11 | 9 10 | rrxbase | |- ( ( 1 ... N ) e. _V -> ( Base ` ( RR^ ` ( 1 ... N ) ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } ) |
| 12 | 8 11 | ax-mp | |- ( Base ` ( RR^ ` ( 1 ... N ) ) ) = { f e. ( RR ^m ( 1 ... N ) ) | f finSupp 0 } |
| 13 | 7 12 | eqtr4i | |- ( RR ^m ( 1 ... N ) ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) |
| 14 | 1 | ehlval | |- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) |
| 15 | 14 | fveq2d | |- ( N e. NN0 -> ( Base ` E ) = ( Base ` ( RR^ ` ( 1 ... N ) ) ) ) |
| 16 | 13 15 | eqtr4id | |- ( N e. NN0 -> ( RR ^m ( 1 ... N ) ) = ( Base ` E ) ) |